Lipschitz Bounds and Nonautonomous Integrals
نویسندگان
چکیده
Abstract We provide a general approach to Lipschitz regularity of solutions for large class vector-valued, nonautonomous variational problems exhibiting nonuniform ellipticity. The functionals considered here range from those with unbalanced polynomial growth conditions fast, exponential type growth. results obtained are sharp respect all the data and also yield new, optimal criteria in classical uniformly elliptic case. give classification different types ellipticity, accordingly identifying suitable get theorems.
منابع مشابه
Closed-Form Bounds to the Rice and Incomplete Toronto Functions and Incomplete Lipschitz-Hankel Integrals
This article provides novel analytical results for the Rice function, the incomplete Toronto function and the incomplete Lipschitz-Hankel Integrals. Firstly, upper and lower bounds are derived for the Rice function, Ie(k, x). Secondly, explicit expressions are derived for the incomplete Toronto function, TB(m,n, r), and the incomplete Lipschitz-Hankel Integrals of the modified Bessel function o...
متن کاملInequalities and bounds for elliptic integrals
Computable lower and upper bounds for the symmetric elliptic integrals and for Legendre’s incomplete integral of the first kind are obtained. New bounds are sharper than those known earlier. Several inequalities involving integrals under discussion are derived. © 2007 Elsevier Inc. All rights reserved.
متن کاملLipschitz Continuity of Discrete Universal integrals Based on copulas
The stability of discrete universal integrals based on copulas is discussed and examined, both with respect to the norms L1 (Lipschitz stability) and L∞ (Chebyshev stability). Each of these integrals is shown to be 1-Lipschitz. Exactly the discrete universal integrals based on a copula which is stochastically increasing in its first coordinate turn out to be 1-Chebyshev. A new characterization ...
متن کاملA note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems
We prove a new local upper Lipschitz stability result and the associated local error bound for solutions of parametric Karush–Kuhn–Tucker systems corresponding to variational problems with Lipschitzian base mappings and constraints possessing Lipschitzian derivatives, and without any constraint qualifications. This property is equivalent to the appropriately extended to this nonsmooth setting n...
متن کاملSemi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings
It is shown how known results for autonomous difference equations can be adapted to definitions of semi-hyperbolicity and bi-shadowing generalized to nonautonomous difference equations with Lipschitz continuous mappings. In particular, invertibility and smoothness of the mappings are not required and, for greater applicability, the mappings are allowed to act between possibly different Banach s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2021
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-021-01698-5